Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.727
Filtrar
1.
Sci Rep ; 14(1): 7704, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565604

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor, and the role of carbohydrate sulfotransferase 11 (CHST11) in this cancer remains unclear. Here, by using bioinformatics methods, we comprehensively analyzed the relationship between CHST11 and clinical significance, immune infiltration, functional enrichment, m6A methylation, and protein-protein interaction networks. We found that CHST11 expression was significantly higher in ccRCC samples than in normal tissues. Additionally, CHST11 levels correlated with the clinicopathological features of ccRCC patients and functioned as a prognostic factor for patient survival. Functional analysis revealed the involvement of CHST11 in metabolic pathways. Immune infiltration and m6A methylation analysis suggested the association of CHST11 with immune cell abundance in the tumor microenvironment and specific methylation patterns in ccRCC. The in vitro analysis of the clinical samples and ccRCC cell lines demonstrated that the overexpression of CHST11 promotes ccRCC cell proliferation, migration, and invasion, while its suppression has the opposite effect. Thus, CHST11 may play a remarkable role in the occurrence and progression of ccRCC. Functionally, CHST11 promotes the aggressiveness of ccRCC cells. These findings provide insights into the role of CHST11 in ccRCC progression.Registry and the Registration No. of the study/trial: No. 2021K034.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Agressão , Biomarcadores , Neoplasias Renais/genética , Prognóstico , Microambiente Tumoral , Sulfotransferases/genética
2.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396748

RESUMO

Dehydroepiandrosterone (DHEA), a precursor of steroid sex hormones, is synthesized by steroid 17-alpha-hydroxylase/17,20-lyase (CYP17A1) with the participation of microsomal cytochrome b5 (CYB5A) and cytochrome P450 reductase (CPR), followed by sulfation by two cytosolic sulfotransferases, SULT1E1 and SULT2A1, for storage and transport to tissues in which its synthesis is not available. The involvement of CYP17A1 and SULTs in these successive reactions led us to consider the possible interaction of SULTs with DHEA-producing CYP17A1 and its redox partners. Text mining analysis, protein-protein network analysis, and gene co-expression analysis were performed to determine the relationships between SULTs and microsomal CYP isoforms. For the first time, using surface plasmon resonance, we detected interactions between CYP17A1 and SULT2A1 or SULT1E1. SULTs also interacted with CYB5A and CPR. The interaction parameters of SULT2A1/CYP17A1 and SULT2A1/CYB5A complexes seemed to be modulated by 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Affinity purification, combined with mass spectrometry (AP-MS), allowed us to identify a spectrum of SULT1E1 potential protein partners, including CYB5A. We showed that the enzymatic activity of SULTs increased in the presence of only CYP17A1 or CYP17A1 and CYB5A mixture. The structures of CYP17A1/SULT1E1 and CYB5A/SULT1E1 complexes were predicted. Our data provide novel fundamental information about the organization of microsomal CYP-dependent macromolecular complexes.


Assuntos
Complexos Multienzimáticos , Esteroide 17-alfa-Hidroxilase , Sulfato de Desidroepiandrosterona , Complexos Multienzimáticos/metabolismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Oxirredução , Esteroides , Ressonância de Plasmônio de Superfície , Sulfotransferases/genética , Sulfotransferases/metabolismo
3.
Clin Transl Med ; 14(2): e1587, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372484

RESUMO

Metastasis is responsible for at least 90% of colon cancer (CC)-related deaths. Lipid metabolism is a critical factor in cancer metastasis, yet the underlying mechanism requires further investigation. Herein, through the utilisation of single-cell sequencing and proteomics, we identified sulfotransferase SULT2B1 as a novel metastatic tumour marker of CC, which was associated with poor prognosis. CC orthotopic model and in vitro assays showed that SULT2B1 promoted lipid metabolism and metastasis. Moreover, SULT2B1 directly interacted with SCD1 to facilitate lipid metabolism and promoted metastasis of CC cells. And the combined application of SCD1 inhibitor CAY with SULT2B1- konockout (KO) demonstrated a more robust inhibitory effect on lipid metabolism and metastasis of CC cells in comparison to sole application of SULT2B1-KO. Notably, we revealed that lovastatin can block the SULT2B1-induced promotion of lipid metabolism and distant metastasis in vivo. Further evidence showed that SMC1A transcriptionally upregulated the expression of SULT2B1. Our findings unveiled the critical role of SULT2B1 in CC metastasis and provided a new perspective for the treatment of CC patients with distant metastasis.


Assuntos
Neoplasias do Colo , Metabolismo dos Lipídeos , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Sulfotransferases/genética , Sulfotransferases/metabolismo , Estearoil-CoA Dessaturase/metabolismo
4.
Dev Growth Differ ; 66(3): 248-255, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326088

RESUMO

Wnt is a family of secreted signaling proteins involved in the regulation of cellular processes, including maintenance of stem cells, carcinogenesis, and cell differentiation. In the context of early vertebrate embryogenesis, graded distribution of Wnt proteins has been thought to regulate positional information along the antero-posterior axis. However, understanding of the molecular basis for Wnt spatial distribution remains poor. Modified states of heparan sulfate (HS) proteoglycans are essential for Wnt8 localization, because depletion of N-deacetylase/N-sulfotransferase 1 (NDST1), a modification enzyme of HS chains, decreases Wnt8 levels and NDST1 overexpression increases Wnt8 levels on the cell surface. Since overexpression of NDST1 increases both deacetylation and N-sulfation of HS chains, it is not clear which function of NDST1 is actually involved in Wnt8 localization. In the present study, we generated an NDST1 mutant that specifically increases deacetylation, but not N-sulfation, of HS chains in Xenopus embryos. Unlike wild-type NDST1, this mutant did not increase Wnt8 accumulation on the cell surface, but it reduced canonical Wnt signaling, as determined with the TOP-Flash reporter assay. These results suggest that N-sulfation of HS chains is responsible for localization of Wnt8 and Wnt8 signaling, whereas deacetylation has an inhibitory effect on canonical Wnt signaling. Consistently, overexpression of wild-type NDST1, but not the mutant, resulted in small eyes in Xenopus embryos. Thus, our NDST1 mutant enables us to dissect the regulation of Wnt8 localization and signaling by HS proteoglycans by specifically manipulating the enzymatic activities of NDST1.


Assuntos
Heparitina Sulfato , Proteínas Wnt , Via de Sinalização Wnt , Animais , Heparitina Sulfato/metabolismo , Proteoglicanas , Sulfotransferases/genética , Sulfotransferases/metabolismo , Xenopus laevis/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
5.
Am J Med Genet A ; 194(3): e63422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37876363

RESUMO

CHST3-related chondrodysplasia with congenital joint dislocations (CDCJD, #MIM 143095), is a rare genetic skeletal disorder caused by biallelic loss of function variants in CHST3. CHST3 is critical for the sulfation of chondroitin sulfate. This study delineates the clinical presentation of nine individuals featuring the key symptoms of CDCJD; congenital joint (knee and elbow) dislocations, short trunk short stature progressive vertebral anomalies, and metacarpal shortening. Additional manifestations include irregular distal femoral epiphysis, supernumerary carpal ossification centers, bifid humerus, club foot, and cardiac abnormalities. Sanger sequencing was carried out to investigate molecular etiology in eight patients and exome sequencing in one. Genetic testing revealed five homozygous variants in CHST3 (four were novel and one was previously reported). All these variants are located on sulfotransferase domain of CHST3 protein and were classified as pathogenic/ likely pathogenic. We thus report on nine individuals with CHST3-related chondrodysplasia with congenital joint dislocations from India and suggest monitoring the health of cardiac valves in this condition.


Assuntos
Nanismo , Luxações Articulares , Anormalidades Musculoesqueléticas , Osteocondrodisplasias , Humanos , Luxações Articulares/diagnóstico , Luxações Articulares/genética , Mutação , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Sulfotransferases/genética
6.
Hum Mol Genet ; 33(6): 520-529, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38129107

RESUMO

Intellectual Disability (ID) is the major cause of handicap, affecting nearly 3% of the general population, and is highly genetically heterogenous with more than a thousand genes involved. Exome sequencing performed in two independent families identified the same missense variant, p.(Gly611Ser), in the NDST1 (N-deacetylase/N-sulfotransferase member 1) gene. This variant had been previously found in ID patients of two other families but has never been functionally characterized. The NDST1 gene encodes a bifunctional enzyme that catalyzes both N-deacetylation and N-sulfation of N-acetyl-glucosamine residues during heparan sulfate (HS) biosynthesis. This step is essential because it influences the downstream enzymatic modifications and thereby determines the overall structure and sulfation degree of the HS polysaccharide chain. To discriminate between a rare polymorphism and a pathogenic variant, we compared the enzymatic properties of wild-type and mutant NDST1 proteins. We found that the p.(Gly611Ser) variant results in a complete loss of N-sulfotransferase activity while the N-deacetylase activity is retained. NDST1 shows the highest and the most homogeneous expression in the human cerebral structures compared to the other members of the NDST gene family. These results indicate that a loss of NDST1 N-sulfation activity is associated with impaired cognitive functions.


Assuntos
Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Acetilglucosamina , Cognição , Padrões de Herança , Proteínas Mutantes , Sulfotransferases/genética
7.
Anim Sci J ; 94(1): e13894, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38054387

RESUMO

Chondroitin sulfate/dermatan sulfate (CS/DS) is a member of glycosaminoglycans (GAGs) found in animal tissues. Major CS/DS subclasses, O, A, C, D, and E units, exist based on the sulfation pattern in d-glucuronic acid (GlcA) and N-acetyl-d-galactosamine repeating units. DS is formed when GlcA is epimerized into l-iduronic acid. Our study aimed to analyze the CS/DS profile in 3 T3-L1 cells before and after adipogenic induction. CS/DS contents, molecular weight (Mw), and sulfation pattern were analyzed by using high-performance liquid chromatography. CS/DS synthesis- and sulfotransferase-related genes were analyzed by reverse transcription real-time PCR. CS/DS amount was significantly decreased in the differentiated (DI) group compared to the non-differentiated (ND) group, along with a lower expression of CS biosynthesis-related genes, chondroitin sulfate N-acetylgalactosaminyltransferase 1 and 2, as well as chondroitin polymerizing factor. GAGs in the DI group also showed lower Mw than those of ND. Furthermore, the A unit was the major CS/DS in both groups, with a proportionally higher CS-A in the DI group. This was consistent with the expression of carbohydrate sulfotransferase 12 that encodes chondroitin 4-O-sulfotransferase, for CS-A formation. These qualitative and quantitative changes in CS/DS and CS/DS-synthases before and after adipocyte differentiation reveal valuable insights into adipocyte development.


Assuntos
Sulfatos de Condroitina , Dermatan Sulfato , Animais , Sulfatos de Condroitina/análise , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/análise , Dermatan Sulfato/metabolismo , Dermatan Sulfato/farmacologia , Glicosaminoglicanos/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Diferenciação Celular
8.
Discov Med ; 35(179): 1147-1159, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058080

RESUMO

BACKGROUND: Emerging evidence indicates the importance of heparan sulfate 6-O-sulfotransferase 2 (HS6ST2) in a number of developmental processes. Little is known regarding its biological function in regulating cervical cancer (CC) progression. In this study, we aim to explore the role of HS6ST2 in CC progression. METHODS: The transcriptome sequencing data of CC tissues from three databases, GSE64217, GSE138080, and GSE63514, was examined for genes with significant changes. The expression profile for HS6ST2 within CC tissue was then assessed through fluorescence quantitative PCR and immunohistochemistry and compared to data from patients with clinicopathological features. A multivariate survival analysis was performed using the COX regression. The real-time quantitative PCR assessed the HS6ST2 expression profile within CC cellular cultures. The results of knocking down HS6ST2, considering the proliferative activity and invasiveness of CC cultures in vitro, were detected through cell viability assay, clonogenic assessment, tumorsphere formation analysis, 3D invasion experiment and transwell assay. The impact of HS6ST2 knockdown in CC proliferation was also evaluated in vivo using a nude mice model. RESULTS: HS6ST2 was severely upregulated within CC tissues across the three explored databases (GSE64217, GSE138080, and GSE63514). Fluorescent quantitative PCR and immunohistochemistry experiments identified HS6ST2 as highly upregulated within patients CC tissues. Survival analysis taking into account the parameters of lymph node metastasis, Federation of Gynecology and Obstetrics (FIGO) stage, depth of invasion, pathological grade, and HS6ST2 expression level demonstrated that individuals with downregulated HS6ST2 exhibited considerably extended progression-free survival (PFS) and overall survival (OS) in comparison to upregulated HS6ST2 cases. According to the findings of COX univariate analysis, the parameters lymph node metastasis, FIGO stage, depth of invasion, pathological grade, and HS6ST2 expression level, all showed a statistically significant correlation with effect upon prognosis of CC patients. The FIGO stage, depth of invasion and expression level of HS6ST2 were identified as independent risk variables influencing CC case prognosis within subsequent COX multivariate analysis. Cell function experiments proved that HS6ST2 knockdown can considerably diminish the proliferative potential, stemness and invasive traits of CC cells. Tumor formation experiments in nude mice in vivo demonstrated that knocking down HS6ST2 can significantly thwart CC cellular proliferative properties within animal models. CONCLUSIONS: The clinicopathological features and the survival time of the patients significantly correlate with the level of HS6ST2 expression in CC tissue samples.


Assuntos
Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Metástase Linfática , Camundongos Nus , Prognóstico , Sulfotransferases/genética , Sulfotransferases/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
9.
Nat Commun ; 14(1): 7297, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949843

RESUMO

Sulfonation as one of the most important modification reactions in nature is essential for many biological macromolecules to function. Development of green sulfonate group donor regeneration systems to efficiently sulfonate compounds of interest is always attractive. Here, we design and engineer two different sulfonate group donor regeneration systems to boost the biosynthesis of sulfated compounds. First, we assemble three modules to construct a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) regeneration system and demonstrate its applicability for living cells. After discovering adenosine 5'-phosphosulfate (APS) as another active sulfonate group donor, we engineer a more simplified APS regeneration system that couples specific sulfotransferase. Next, we develop a rapid indicating system for characterizing the activity of APS-mediated sulfotransferase to rapidly screen sulfotransferase variants with increased activity towards APS. Eventually, the active sulfonate group equivalent values of the APS regeneration systems towards trehalose and p-coumaric acid reach 3.26 and 4.03, respectively. The present PAPS and APS regeneration systems are environmentally friendly and applicable for scaling up the biomanufacturing of sulfated products.


Assuntos
Fosfoadenosina Fosfossulfato , Sulfatos , Sulfotransferases/genética , Sulfotransferases/metabolismo , Cinética
10.
Front Immunol ; 14: 1242330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671153

RESUMO

Background: An essential fact underlying the severity of Staphylococcus aureus (S. aureus) infection is the bicomponent leukocidins released by the pathogen to target and lyse host phagocytes through specific binding cell membrane receptors. However, little is known about the impact of post-transcriptional modification of receptors on the leukocidin binding. Method: In this study, we used small interfering RNA library (Horizon/Dharmacon) to screen potential genes that affect leukocidin binding on receptors. The cell permeability was investigated through flow cytometry measuring the internalization of 4',6-diamidino-2-phenylindole. Expression of C5a anaphylatoxin chemotactic receptor 1 (C5aR1), sulfated C5aR1 in, and binding of 6x-His-tagged Hemolysin C (HlgC) and Panton-Valentine leukocidin (PVL) slow-component to THP-1 cell lines was detected and analyzed via flow cytometry. Bacterial burden and Survival analysis experiment was conducted in WT and myeloid TPST-cko C57BL/6N mice. Results: After short hairpin RNA (shRNA) knockdown of TPST2 gene in THP-1, HL-60, and RAW264.7, the cytotoxicity of HlgAB, HlgCB, and Panton-Valentine leukocidin on THP-1 or HL-60 cells was decreased significantly, and the cytotoxicity of HlgAB on RAW264.7 cells was also decreased significantly. Knockdown of TPST2 did not affect the C5aR1 expression but downregulated cell surface C5aR1 tyrosine sulfation on THP-1. In addition, we found that the binding of HlgC and LukS-PV on cell surface receptor C5aR1 was impaired in C5aR1+TPST2- and C5aR1-TPST2- cells. Phagocyte knockout of TPST2 protects mice from S. aureus infection and improves the survival of mice infected with S. aureus. Conclusion: These results indicate that phagocyte TPST2 mediates the bicomponent leukocidin cytotoxicity by promoting cell membrane receptor sulfation modification that facilitates its binding to leukocidin S component.


Assuntos
Leucocidinas , Infecções Estafilocócicas , Sulfotransferases , Animais , Camundongos , Membrana Celular , Camundongos Endogâmicos C57BL , Staphylococcus aureus , Sulfotransferases/genética
11.
Protein Pept Lett ; 30(10): 821-829, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37724676

RESUMO

Estrogen plays a key role in the development and progression of many malignant tumours, and the regulation of estrogen levels involves several metabolic pathways. Among these pathways, estrogen sulfotransferase (SULT1E1) is the enzyme with the most affinity for estrogen and is primarily responsible for catalysing the metabolic reaction of estrogen sulphation. Relevant studies have shown significant differences in the expression of SULT1E1 in different malignant tumours, suggesting that SULT1E1 plays a dual role in malignant tumours, both inhibiting the growth of malignant tumours and promoting their development. In addition, the expression level of SULT1E1 may be regulated by a variety of factors, which in turn affect the growth and therapeutic effects of malignant tumours. The aim of this paper is to review the mechanism of action of SULT1E1 in malignant tumours and the mechanisms that are regulated, in order to provide potential targets for the treatment of malignant tumour patients in the future and theoretical support for the realisation of more personalised and effective therapeutic regimens.


Assuntos
Estrogênios , Neoplasias , Humanos , Estrogênios/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
12.
PLoS Pathog ; 19(9): e1011487, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747931

RESUMO

Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a abundant extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase) from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of neuronal Ndst1- deficient mice, neuronal, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance.


Assuntos
Neurônios , Doenças Priônicas , Príons , Sulfotransferases , Animais , Camundongos , Heparitina Sulfato/metabolismo , Camundongos Knockout , Neurônios/enzimologia , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Príons/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
13.
Dev Dyn ; 252(12): 1407-1427, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37597164

RESUMO

BACKGROUND: Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS: Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS: Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.


Assuntos
Ectoderma , Crista Neural , Crista Neural/metabolismo , Crânio/metabolismo , Desenvolvimento Embrionário/genética , Sulfotransferases/genética , Sulfotransferases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
14.
Biochem Med (Zagreb) ; 33(3): 030503, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37545696

RESUMO

Carbohydrate sulfotransferases (CHST) catalyse the biosynthesis of proteoglycans that enable physical interactions and signalling between different neighbouring cells in physiological and pathological states. The study aim was to provide an overview of emerging diagnostic and prognostic applications of CHST. PubMed database search was conducted using the keywords "carbohydrate sulfotransferase" together with appropriate inclusion and exclusion criteria, whereby 41 publications were selected. Additionally, 40 records on CHST genetic and biochemical properties were hand-picked from UniProt, GeneCards, InterPro, and neXtProt databases. Carbohydrate sulfotransferases have been applied mainly in diagnostics of connective tissue disorders, cancer and inflammations. The lack of CHST activity was found in congenital connective tissue disorders while CHST overexpression was detected in different malignancies. Mutations of CHST3 gene cause skeletal dysplasia, chondrodysplasia, and autosomal recessive multiple joint dislocations while increased tissue expression of CHST11, CHST12 and CHST15 is an unfavourable prognostic factor in ovarian cancer, glioblastoma and pancreatic cancer, respectively. Recently, CHST11 and CHST15 overexpression in the vascular smooth muscle cells was linked to the severe lung pathology in COVID-19 patients. Promising CHST diagnostic and prognostic applications have been described but larger clinical studies and robust analytical procedures are required for the more reliable diagnostic performance estimations.


Assuntos
COVID-19 , Humanos , Prognóstico , Sulfotransferases/genética , Sulfotransferases/metabolismo , Mutação , Teste para COVID-19
15.
BMC Biol ; 21(1): 151, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37424015

RESUMO

BACKGROUND: Chronic kidney disease (CKD) accelerates atherosclerosis, but the mechanisms remain unclear. Tyrosine sulfation has been recognized as a key post-translational modification (PTM) in regulation of various cellular processes, and the sulfated adhesion molecules and chemokine receptors have been shown to participate in the pathogenesis of atherosclerosis via enhancement of monocyte/macrophage function. The levels of inorganic sulfate, the essential substrate for the sulfation reaction, are dramatically increased in patients with CKD, which indicates a change of sulfation status in CKD patients. Thus, in the present study, we detected the sulfation status in CKD patients and probed into the impact of sulfation on CKD-related atherosclerosis by targeting tyrosine sulfation function. RESULTS: PBMCs from individuals with CKD showed higher amounts of total sulfotyrosine and tyrosylprotein sulfotransferase (TPST) type 1 and 2 protein levels. The plasma level of O-sulfotyrosine, the metabolic end product of tyrosine sulfation, increased significantly in CKD patients. Statistically, O-sulfotyrosine and the coronary atherosclerosis severity SYNTAX score positively correlated. Mechanically, more sulfate-positive nucleated cells in peripheral blood and more abundant infiltration of sulfated macrophages in deteriorated vascular plaques in CKD ApoE null mice were noted. Knockout of TPST1 and TPST2 decreased atherosclerosis and peritoneal macrophage adherence and migration in CKD condition. The sulfation of the chemokine receptors, CCR2 and CCR5, was increased in PBMCs from CKD patients. CONCLUSIONS: CKD is associated with increased sulfation status. Increased sulfation contributes to monocyte/macrophage activation and might be involved in CKD-related atherosclerosis. Inhibition of sulfation may suppress CKD-related atherosclerosis and is worthy of further study.


Assuntos
Aterosclerose , Sulfotransferases , Camundongos , Animais , Sulfotransferases/química , Sulfotransferases/genética , Sulfotransferases/metabolismo , Proteínas/metabolismo , Tirosina/metabolismo , Camundongos Knockout , Receptores de Quimiocinas/metabolismo , Aterosclerose/complicações , Processamento de Proteína Pós-Traducional
16.
Genes (Basel) ; 14(7)2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37510254

RESUMO

Musculocontractural Ehlers-Danlos syndrome (EDS) caused by pathogenic variants in CHST14 (mcEDS-CHST14) is a subtype of EDS characterized by multisystem malformations and progressive fragility-related manifestations. A recent international collaborative study showed that 55% of mcEDS-CHST14 patients had hearing loss (HL), more commonly of the high-frequency type. Here, we report the first systemic investigation of the otological features of patients with this disorder based on the world's largest cohort at Shinshu University Hospital. Nine patients [18 ears; four male and five female patients; mean age, 18 years old (range, 10-28)] underwent comprehensive otological evaluation: audiogram, distortion product otoacoustic emission (DPOAE) test, and tympanometry. The audiogram, available in all 18 ears, showed HL in eight patients (8/9, 89%) and in 14 ears (14/18, 78%): bilateral in six patients (6/9, 67%) and unilateral in two (2/9, 22%); mild in eight ears (8/18, 44%) and moderate in six (6/18, 33%); and high-frequency HL in five (5/18, 28%) and low-frequency HL in five (5/18, 28%). An air-bone gap was detected in one ear (1/18, 6%). DPOAE was available in 13 ears, with the presence of a response in five (5/13, 38%) and the absence in eight (8/13, 62%), including in three ears of normal hearing. Tympanometry results were available in 12 ears: Ad type in nine (9/12, 75%) and As type in one (1/12, 8.3%). Patients with mcEDS-CHST14 had a high prevalence of HL, typically sensorineural and bilateral, with mild to moderate severity, of high-frequency or low-frequency type, and sometimes with no DPOAE response. The pathophysiology underlying HL might be complex, presumably related to alterations of the tectorial membrane and/or the basilar membrane of Corti associated with disorganized collagen fibril networks. Regular and careful check-ups of hearing using multiple modalities are recommended for mcEDS-CHST14 patients.


Assuntos
Surdez , Síndrome de Ehlers-Danlos , Adolescente , Feminino , Humanos , Masculino , Síndrome de Ehlers-Danlos/genética , Síndrome de Ehlers-Danlos/patologia , Matriz Extracelular/patologia , Pele/patologia , Sulfotransferases/genética
17.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511089

RESUMO

Renal fibrosis is the final manifestation of chronic kidney disease (CKD); its prevention is vital for controlling CKD progression. Indoxyl sulfate (IS), a typical sulfate-conjugated uremic solute, is produced in the liver via the enzyme sulfotransferase (SULT) 1A1 and accumulates significantly during CKD. We investigated the toxicopathological role of IS in renal fibrosis using Sult1a1-KO mice and the underlying mechanisms. The unilateral ureteral obstruction (UUO) model was created; kidney IS concentrations, inflammation, and renal fibrosis were assessed on day 14. After UUO treatment, inflammation and renal fibrosis were exacerbated in WT mice, with an accumulation of IS in the kidney. However, they were significantly suppressed in Sult1a1-KO mice. CD206+ expression was upregulated, and ß-catenin expression was downregulated in Sult1a1-KO mice. To confirm the impact of erythropoietin (EPO) on renal fibrosis, we evaluated the time-dependent expression of EPO. In Sult1a1-KO mice, EPO mRNA expression was improved considerably; UUO-induced renal fibrosis was further attenuated by recombinant human erythropoietin (rhEPO). Thus, UUO-induced renal fibrosis was alleviated in Sult1a1-KO mice with a decreased accumulation of IS. Our findings confirmed the pathological role of IS in renal fibrosis and identified SULT1A1 as a new therapeutic target enzyme for preventing and attenuating renal fibrosis.


Assuntos
Indicã , Rim , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Eritropoetina/metabolismo , Fibrose , Indicã/metabolismo , Inflamação/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Obstrução Ureteral/metabolismo
18.
Gen Comp Endocrinol ; 342: 114349, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37495023

RESUMO

We identified the bullfrog Rana catesbeiana sulfotransferase 1 (SULT1) family from the BLAST search tool of the public databases based on the SULT1 families of Nanorana parkeri, Xenopus laevis, and Xenopus tropicalis as queries, revealing the characteristics of the anuran SULT1 family. The results showed that the anuran SULT1 family comprises six subfamilies, four of which were related to the mammalian SULT1 subfamily. Additionally, the bullfrog has two SULT1Cc subfamily members that are consistent with the characteristics of the expanded Xenopus SULT1C subfamily. Several members of the bullfrog SULT1 family were suggested to play important roles in sulfation during metamorphosis. Among these, cDNAs encoding SULT1Cc1 and SULT1Y1 were cloned, and the sulfation activity was analyzed using recombinant proteins. The affinity for 2-naphthol and 3'-phosphoadenosine 5'-phosphosulfate (PAPS) and the enzymatic reaction rate were higher in SULT1Cc1 than in SULT1Y1. Both the enzymes showed inhibitory effect of many thyroid hormones (THs) analogs on the sulfation of 2-naphthol. The potency of sulfation activities of SULT1Cc1 and SULT1Y1 against T4 indicated their possible role in the intracellular T4 clearance during metamorphosis.


Assuntos
Naftóis , Sulfotransferases , Animais , Rana catesbeiana/genética , Rana catesbeiana/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo , Hormônios Tireóideos/farmacologia , Xenopus/metabolismo , Xenopus laevis/metabolismo , Mamíferos/metabolismo
19.
Chem Biol Drug Des ; 102(5): 1014-1023, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37487659

RESUMO

Human sulfotransferases 1A3 (SULT1A3) has received particular interest, due to their functions of catalyzing the sulfonation of numerous phenolic substrates, including bioactive endogenous molecules and therapeutic agents. However, the regulation of SULT1A3 expression and the underlying mechanism remain unclear. Here, we aimed to investigate the regulation effects of bile acid-activated farnesoid X receptor (FXR) on SULT1A3 expression, and to shed light on the mechanism thereof. Our results demonstrated that FXR agonists (CDCA and GW4064) significantly inhibit the expression of SULT1A3 at mRNA and protein levels. In addition, overexpression of FXR led to decrease in SULT1A3 expression and knockdown of FXR significantly induced the expression of SULT1A3 in protein and mRNA levels, confirming that FXR expression manifestly showed negative regulatory effect on basal SULT1A3 expression. Furthermore, a combination of luciferase reporter gene and CHIP assays showed that FXR repressed SULT1A3 transcription through direct binding to the region at base pair positions -664 to -654. In conclusion, this study for the first time confirmed FXR was a negative transcriptional regulator of human SULT1A3 enzyme.


Assuntos
Ácido Quenodesoxicólico , Receptores Citoplasmáticos e Nucleares , Humanos , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/metabolismo , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética , RNA Mensageiro/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
20.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373391

RESUMO

Glioblastoma (GB) is an aggressive cancer with a high probability of recurrence, despite active chemoradiotherapy with temozolomide (TMZ) and dexamethasone (DXM). These systemic drugs affect the glycosylated components of brain tissue involved in GB development; however, their effects on heparan sulfate (HS) remain unknown. Here, we used an animal model of GB relapse in which SCID mice first received TMZ and/or DXM (simulating postoperative treatment) with a subsequent inoculation of U87 human GB cells. Control, peritumor and U87 xenograft tissues were investigated for HS content, HS biosynthetic system and glucocorticoid receptor (GR, Nr3c1). In normal and peritumor brain tissues, TMZ/DXM administration decreased HS content (5-6-fold) but did not affect HS biosynthetic system or GR expression. However, the xenograft GB tumors grown in the pre-treated animals demonstrated a number of molecular changes, despite the fact that they were not directly exposed to TMZ/DXM. The tumors from DXM pre-treated animals possessed decreased HS content (1.5-2-fold), the inhibition of HS biosynthetic system mainly due to the -3-3.5-fold down-regulation of N-deacetylase/N-sulfotransferases (Ndst1 and Ndst2) and sulfatase 2 (Sulf2) expression and a tendency toward a decreased expression of the GRalpha but not the GRbeta isoform. The GRalpha expression levels in tumors from DXM or TMZ pre-treated mice were positively correlated with the expression of a number of HS biosynthesis-involved genes (Ext1/2, Ndst1/2, Glce, Hs2st1, Hs6st1/2), unlike tumors that have grown in intact SCID mice. The obtained data show that DXM affects HS content in mouse brain tissues, and GB xenografts grown in DXM pre-treated animals demonstrate attenuated HS biosynthesis and decreased HS content.


Assuntos
Glioblastoma , Humanos , Camundongos , Animais , Glioblastoma/metabolismo , Camundongos SCID , Recidiva Local de Neoplasia , Heparitina Sulfato/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Sulfotransferases/genética , Sulfotransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...